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Sumary

A co-ordinate transformztiorn in the incremsntal phase plane is intro-
duced which facilisates the design of rorlinear sampled-date control systems.
Use of these coordinates permits the slope of a boundary specified by the
nonlinearity to be directly related to a simple gain term in the transfoimed
gystem. A realizsble form of compengation is shown to evolve in terms of the
system variables. By using the tranaformed coordinates it is possibla to
jidentify within each sectionally linear region of the phase plane a unicue
equation for the isoclines. Fummples are pregented to illustrate the method.
These irwvolve contactor, seturation and quantization type nonlirsarities.

I, INTRODUGTION

Samplededata feedback systems containing a simple noeniinearity have
been the subject of a nuzber of lnvestigetlons. llethods of analysis have
been employed using both the describing functlion and the phase plane.

This paper is concerned with the further development of phass<plane tech-
niques.

In the litersature, both esntinuous and discrete variables have been
used as phase-plans coordinntes. In orfier to facilitate the analysis of 2
ccntactor system, Izawa and 'eaver have roplacsd the sanpling action by a
random transuort lagvl Thils method of snalysis is limited to contastor-
type nonlinearities. !llin and Jury have adopted the phase~plane tech-
niques applicable to continuous systens to sampled-data systansaz However,

the computational difficulties resulting from the need to identify time
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with the trajectories inposes a detraction to the method, Aseltine and
ilegbit have sugpested the incremental phase plane as a natural mediuwm for
studying the behavior of'nonlinear sampled-data systems.3 This paper

is concerned with the mors effective utilization of the ineramental phase
p;ane as a desipn vehicle.

Jhen the nonlinearity in Figure 1 is sectionally linear, it is
pogsible te define boundariea in the phase plane within which the control
syastem behaves linearly. Compensation schemes may then be employed which
produce a desired rotation or translation of these boundaries, lowever,
in applying this technicue to sampled-data systems, certain complications
arise when the solutior path erosses such a boundary. The origin of this

£ficulty is related to the presence of the finite zero in the pulse
transfer function of the quadratic plant, It will be shown that this
difficulty can be overcome by introducing a new set of coordinates in
terms of which the solution path encounters no complication in traversing
a boundary. As a result, the problems of analysis and design c¢an be
significantly simplified.

In the development to follow, the concept cf isoclines as applied
to the incremental phase plane will be discussed briefly since thie

constitutes the computational tool to be eaployed throuchout the paper.

The new phaso-plane coordinates will then be introdused, and attention will

be directed to the mapping of boundaries and system variables of interest
into this coordinate system. The form of compensation derived in the new
coordinste system will be shown to be physically realizable when related

to systen varisbles. Finally, several examples will be discussed for the

purpose of illustrating the technigue advanced in the naper and providing

I,



some inaight to the type of behavior which results from the presence of
various forms of simple nonlinearities in sampled-data systems. These

ghall ineclude the contactor, saturation and cuantization.

II. Use of Isoclines in the Incremental Phage Plane
The coordinates of the inecremental phase plane (henceforth to be called

the phase plane) will be defined in terms of the variable ¥ and its first
forward difference, AX = X(n+1) - X(n) , sonetimes to be denoted
by y-4X. The solution 1s now sought to the second-order linear difference

equation

Y+ bAX 2 cX = dm (1)

vhere m is assumed constant. This solution can be represented by the
Jocus of a ee£ of points, Although the concept of a eontinuous trajectory
has no meaning in the irgcromental phase plane, it is convenient to join
successive solution points by straight-line sogments as indicated in
Figure 2, These connected 1:!.n§ sesments will be called a solution path
of (1),

An isocline can now be defined in the X,y plane in terms of the
slope of these line segmant;s. For each solution point p; which is
nonsingular there is a slope -Ay/ax associated with the line seg;nent
oonnecting p: with the succeeding solution point p;,, . The loéus of
points which initistes ine segments of constant slope iz defined as au
1socline.. Thus with k= Ay/ax , the isoclines are found from (1) to
be given by the equation

. dm o _ex (2)
k = ; X -k
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objective consider the system in Figure 3, For the present let XK .+ .
In so far os U is concerned it will be seen that this system is ecuivalent
to the system in Figure 1 when the compensation has bsen deloted (The
initial condition c(s) will be discussed in detail subsecuently). For
this special ocase (K.= 1) , it i3 noted that e-u. In particular, the
varlable x has been defined so that the parallel feedback path generates
a forward first difference, AX , If the phase-plane coordinates are

now taken to be X, aX, then the following equation pertains:

g = W= X+ AX ) 'cuv Ke=y, (3&)

V- B

In Figure 4, the aobove ecuation is plotted for values of e ~ru sconstant.

Suppose for purposes of clarification that the nonlinearity is an ideal

contactor without deadzone. Then the line W =o would constitute a

switching boundary whose slope is determined by the gain term '/(i-p) .
Since the slope of the lines u :constant 1s controlled by the

gain of the inner feedback path, a rotation of these lines can be accom-

nlished by introducing a galn k. as suggested in Figfuro 3. It 1s

observed, however, that with K %1, ¢ and u are no longer equivalent.

In faet the following results obtain:

(5)




From (5) it is scon that lines of constant e bear a fixed relaticmship
to the X,y plane wherass the slope of the Loundsyles defined by
coratant w are dependent upon K. .

If values o K. other than unity are to be specifled it is necesasry
to determine the compensation in Figure § which sutisfies
an arbitrary choice of K. . Tt 1s readily shown that the couwpensation in
Plgure 5 meets this requirement. It should be noted that this eorpensat lon
in the fcedback jath is phrysiecally realizable.. In the event that %Lhe
cor pensationvls to be roalized by & digitai filter, the customary rastrin-
ticn should be inposed that the zero at z = A must be loocated within

the unit cirele. In the event that the plant conteine at least a sinsle

pole at z ., i% can be seen that the corpensation is realizable diroctly

by sampling the Zirst derivative of the response vorlable in which ease
the formsr restriction on the location of the zero o longer anplies

sirce cancellation is rot involved. This statement can be clarified by
referring to the dilagram of a ouadratic »lant in Fipure 6 which contans

a single pole at S z=0. The pulse transfer funciion C/m for this

aystem 1s of the forn

< K (z-4)
Mmoo (_z-w)(zrﬁ(i)

If the output rate i3 now considered az an outrut, the transfor function

w1 ld become




By identifying the ahove equations with Figure 5 with «,=1! , it will be
seen that the compensating filter indicated in the diagram generates a
signal which is proportional to the sampled values of c .

Thus far, reference has boen made to the system exclusively in terms
of the pulse transfer function. In order now to establish certain rela-
tionships between the physical problem and the mathematical model used
in the analysis, it is required that reference be made to the ~ontinuous~
system variables, representative components of which appear in Figure 6,

One point of fundamental importance should not be overlooked. In
the original system configuration of Figure 1 it was tacltly assumed
that the nonlinéarity was located as showm in Figure 6. This was required
in order that the linear pulse transfer function could be defined for
the plant and dat-a-holdv combination, If the nonlinearity possesses
zero memory, however, it 1s permissable to interchange the nonlinearity
and the data-hold; conversely.a nonlinearity with memory 1s not inter-
changeable. The import of this statement is that a contactor with
hysteresis cannot bes treated by the methods presented in this paper. The
reader is referred to the literature for discuasion of hysteresis effects
in sampled-data systcms.l’l”

Attention is now directed to the manner in which the initial condi-
tions, C(°) gnd €(o) , are related to the X,y plane. It will be shown
that the discrete variable X can be génerated by sampling the signals
derived from ¢ and ¢ as indicated in Figure 6. The method of determine
ing the proper valucs of K, and K, will be t.o equate X/M as derived
from Fipure 6 to an equivalent aexpression derived from Figure 3.



Prom Figure 6 1t follows that

X (=) Ke (v-x) T {zZ- A% K

Mo {zew) G- (2 0z
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where T ecuals the sample perdod, o= e , and A defines ths zero
of the pulse transfer function of the plant-hold combtination. From

Figure 3 - with o, =t it follows that
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These results are ctill volid if the »lant emising a second-order pole
at <=0 in which case A=-1 . When the plant contalns poles at -4a,,

and -4, , .. no poles at s =: ¢ , the result becomes

A

T (1 -xY{1-v)0a, - q, '
€ - Coxdlovale, e (9)
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K’;'::.}
e



where %, = € T o4 = e %7, and B and T have their former meaning.

P

These results permit initial conditions in X and y to be derived from an

arbitrary set of conditions c @, ¢ . Thus from FPigure 6

() = -~ clod 4 K, ¢
x “ (10)
and from (5) with ey = -~ c(
IV L e - X
- c( x (1)
From (10) and (11) it follows that
VY =~ (| —/{.\ K, ¢ () (i2;
R = ~ C() = _Y_’fl
v-f
IV, EXAMPLES

A. Contactor

The system to be considered is shown in Fig. 5, the transformed con-
figuration being shown in Fig. 3. The nonlinearity to be used is described
in Fig, 7. In this example the purpose is to illustrate an application of the
method and illustrate how variatione in K, affect the periodic state of the
system, In the specific case to be treated it is assumed that % - 0‘31,7)3(1«.‘)
/5: -0,72, K,=1 and the dead zone is a suall quantity, From Figure 3 the

pertinent difference equation then becomes
~ (- s ax o+ (v~ 4,)A¥ (13)

This equation is séen to be in the form of (i). According to (2), the iso-
clines are defined by the equation

(14)
ko= - (-2 - (oD



The remaining ecuations of interest are given by (5). For the

uncompensated system (K.=:), the linee of constant ¢ and w are squiva~
lent. The switching boundary for this case 1s plottsd in Figure 8,
together with a solution path starting at X = - cl=-2%., It is
observed that a 1imii cycle is formed with approximately unit amplitude
of the error variable,

Conuider now the effect of K. 4n Figure 3, From (5) it is
perceived that an increase in X, (Ka-l) will cause a sounterclockwise
rotation of the lines w = constant. (llote that the lines of ¢ = constant
are unaffocted,) The periodic state of the system will now be investigated
for the condition shown in Figure 9 in which K. has been adjusted so that
the switching boundary passes below the solution point {1). The solution
path can agoin be computed using (13) and (14). The amplitude of the
resulting limit cycle, measured in terms of the error variable, is seen
to be considerably reduced in amplitude, It is of interest to note that
the blas upon which the 1imit cycle is superposed Is a function of the
initial condition, < () , Thus a change in (i will shift the position
of the limit cycle along the x axis: Since the 1soclines siven by (14)
are a function of y only, the limit cycle itself is not dependent .pon x
(except in sc far as the requirement for alternating values of m s
satisfied by the slope of the switching line).

The esults which have been derived above are intended to suggest
the manner in which the periodic state of Vthe contactor system can be
altered by mesns of the compensating gain K, . Although the discussion
has been limited to initial states in which <o) =0 , the method may

be applied to an arbitrary set of initial conditions,

. 0



B, Saturation

In this example the way in which system bandwidth affects the
gaturation problem is to be investigated. The system to be considered
1s represented in Fipure 10A, the transformed system being shown in Fipure
Pigurs 10B, At this point it will be assumed that the transmission of
the quantizer can be approximated by Q='. The anproach to be taken
will be first to select K. and K, 8o as to obtaln the desired roots of
the characteristic equation, assuming linear operation, and them to
analyze the effect of saturation, using the transformed coordinates. For
convenlence the bandwidth will be adjusted under the constraint that the
poles are critically damped. Accordingly two cases will be {reated for
which the characteristic equation is of the form ( = - ¥) =0, The
corresponding linear homogenecus difference ecuation is r~iven
by A%+ baAx + ¢ X = 0 o

A specific solution will now be obtained by arbitrarily assigning
the pumerical values T=1 , L=1 to the system paraveters in Figure 10.
If the roots of the characteristic ecuation at z:Y are specified to
represent a small ard a large bandwidth, relatively speaking, the
remaining parameters cen be deterrined, as surmarized in Tsble I.
Referring to (2) and substituting the appropriate values from Table I,
the {soclines for the unsaturated system are defined by the ecuations

‘<=-’-(;-z, ¥ = o (15)

(11)



The equation of the isoclines for the saturated system is common to

both cases being treated, and is siven by k= -'/y . Finally, the
ecuation for the boundaries of the linear range in the x y plane is seen
from the gystem in Figure 10B to be given by

i_ =-X~%‘Y (16)

X
Ko
By applying the above equations, solution paths have been plotted in
Figures 11 and 12 for the two cases being studied, In each case a solution
path is identified which intersects the eigenvector at the saturatlon
boundary., A comparison of these solutions indicates the degree to which
the respective system designs are susceptible to saturation effects.
Co Cuantization

Referring again to the system in Figure 10, the effect of quantization
will be analyzed, assuming that the quantized inverval 4 is small compared
to the saturation level. Using the function for  which is graphically

represented in Figure 13, the boundary lines in the x y plane are

definsd by
(hv+2n)$ K
AARALTA A VI
: : a7)

where n is a positive or negative integer. The isoclines within a given
strip are in turn defined by

k. nd (18)
Y



Using the values of X, and K _given in Table I, typical solution paths
are plotted in Figures 13 and 14.

The results in Figure 14 warrant some discussion in that a limit cycle
is indicated in the X,y plane, This limit cycle differs from that of
Figure 9, however, in the sense that it oscillates along a line of constant e,
indicating that the gampled valuss of e reach a steady value. Observation
of Pigure 6 shows that, as a consequence of the fact that e (k) s - c (k)= const.
it is necessary for ¢ to vary in accordance with the periodicity of X .
This state of affairs can exist only if an oscillation exists at one half the
sampling frequency in the form of intersample ripple. The point to be made
here is that an interssmrle ripple which would be undetectable in the ¢, ae
plane is detectable in the X,y plane in the form of a limit cycle along a

line of constant e

V. CONCLUSIONS

A set of coordinates in the incremental phase plane has been introduced
which permits the slope of a boundary specified by the nonlinearity to be
directly related to & simple gain term in the transformed system, This gain
in turn is equivalent to a simple form of realizable compensation in terms
of the system veriables, By using the new set of coordinates it is possible
to identify within each sectionally linear region & unique equation for the
isoclines, As a result the concept of boundaries can be exploited in &
design context,

Although in the analysis the nonlinearity is assumed to precede the



data-hold, it is permissable to include nonlinearities ai the output of the
data-hold providing that they do not involve memory as in the case of
hysteresis,

Examples involving a contactor, saturation and quantization have been
presented to illustrate the manner in which a design can be carried out in
the transformed coordina%es.

It is felt that possibilities exist for extending the method to the
problem of synthesizing switching boundaries for quasi-optimum control of

sampled-data systems,
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